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Abstract. Appropriate geometrical machinery for the study of time-dependent Lagrangian 
dynamics is developed. It is applied to the inverse problem of the calculus of variations, 
and a set of necessary and sufficient conditions for the existence of a Lagrangian are given, 
in terms of the existence of a 2-form with suitable properties, which are exactly equivalent 
to the Helmholtz conditions. 

1. Introduction 

The Helmholtz conditions are the conditions that must be satisfied by a non-singular 
multiplier matrix (a&( t, x, X)) in order that a given system of second-order ordinary 
differential equations 

fa = f " ( t ,  x, X), 

a a $ C b + p a  = O  (Pa = 

when written in the form 

become the Euler-Lagrange equations for some Lagrangian function L( f ,  x ,  X). We 
quote them in the form given by Sarlet (1982) and derived earlier by Douglas (1941). 
First, following Sarlet, we define functions A:, BZ, @: by 

A" b -  - -1 z a f a / a i b ,  B;: = -a fa /axb ,  = B:-AfAi-T(Ag), 

where r stands for the differential operator (or vector field) 

a / a t + X a  a / a x a + f a  a i a i " .  
Then the necessary and sufficient conditions for the existence of a Lagrangian for the 
equations aaGb +Pa = 0 are that the functions a a b  should satisfy the following: 

aba = aah r (aab)  = aaA',+akA:, 

CYac@; = ak@:, a a a b / a i c  = a a a c / a i b .  
These are the Helmholtz conditions. 
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These conditions provide, in a sense, a solution to the inverse problem of the 
calculus of variations (for finitely many degrees of freedom), which asks for the 
circumstances under which a system of second-order ordinary differential equations is 
of the Euler-Lagrange type. But it is not a completely satisfactory solution since it 
involves the extraneous functions (Yab, when one would hope for conditions on the 
functions f “  alone. However, the complexity of even the two degrees of freedom case, 
as analysed by Douglas (1941), makes it clear that such a hope is optimistic in the 
extreme. Nevertheless, recent work of Henneaux (1982), Sarlet (1982) and others 
has shown that progress can be made in unravelling the Helmholtz conditions. In 
particular, Sarlet was able to show that they may be replaced by an equivalent set of 
conditions, for a matrix-valued function of xfl and i” alone, in which the ‘propagation 
equation’ r( (Yob) = (Y,,A; + abcAi is replaced by a sequence, in principle infinite, of 
purely algebraic conditions similar to the condition crac@i = in form, this (at a 
fixed time) being indeed the first. It appears that in effect Sarlet’s conditions are ‘initial 
conditions’ which must be satisfied in order that the multiplier matrix, assumed to  
satisfy (Yba = (Yob, cy,,@‘cb = (Ybc@fi,  and aaflb/aic  = aaa,/aib for some particular value of 
t ,  and propagated according to the remaining Helmholtz conditions, will continue to 
satisfy these conditions for all t. 

The general subject area of Lagrangian dynamics is one in which analytical and 
geometrical approaches usefully complement and inform each other. Sarlet’s work 
was mainly analytical; Henneaux on the other hand used geometrical methods to 
obtain results which, though analogous in many ways, were less detailed than Sarlet’s. 
One of the authors of the present paper has shown (Crampin 1981,1983) that by 
using the geometrical structure of the tangent bundle of a differentiable manifold one 
can express the Helmholtz conditions in a natural geometrical form, and give a 
geometrical interpretation of much of Sarlet’s analysis. However, this approach, since 
it is based on tangent bundle geometry, can deal with the time-independent case only. 
It is clear that a complete understanding, in geometrical term’s, of the problem can be 
achieved only if the time is explicitly included as a coordinate in the space under 
consideration; that is, only if the underlying manifold is taken to be the evolution 
space of the system, rather than just the space of configurations and generalised 
velocities (that is, the tangent bundle over configuration space). Unfortunately, these 
two spaces have rather different geometrical structures. At the simplest level this is 
just a consequence of the fact that one of them is odd dimensional, the other even. 
Thus on evolution space the vector field which defines the dynamics of a Lagrangian 
system is a characteristic vector field of a 2-form which defines a contact structure; 
whereas the dynamics of a time-independent system is represented on the tangent 
bundle over configuration space by a vector field determined by the energy function 
via a symplectic 2-form. It is a consequence of these differences that geometrical 
structures on one type of space cannot be simply transported lock, stock and barrel 
to the other. 

The purpose of the present paper is to develop the machinery necessary to carry 
out the kind of geometrical study undertaken by Crampin (1981,1983), but in the 
context of evolution space, for time-dependent systems. It is hoped that eventually a 
complete understanding of Sarlet’s results will be achieved by these means; however, 
the present paper goes only so far as providing a geometrical equivalent to the 
Helmholtz conditions in the time-dependent case, which parallels the one given in the 
time-independent case by Crampin (1981). The presentation of this result, and the 
description of the appropriate geometrical structures, is preceded by a brief discussion 
of the nature of evolution space itself. 
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2. Evolution space 

We shall be dealing throughout with a dynamical system with finitely many (say m )  
degrees of freedom; we therefore take its configuration space to be a differentiable 
manifold M of dimension m, with local coordinates ( x " ) .  The evolution space of the 
system is then R x TM, However, we should like to describe the space in a little more 
detail, partly in order to show how it links up with the spaces appropriate to field 
theory, and partly to motivate the choices of some of the geometrical structures which 
we display in P 3. 

In fact we wish to think of evolution space as the so-called first jet bundle of 
(smooth) maps R + M, that is, J ' (R ,  M ) .  This we shall briefly describe. The points 
of J ' (  R, M )  are defined in terms of smooth maps R -f M, that is, curves in M. However, 
we wish to identify the parameter on any curve which is a possible trajectory of the 
system with the time, considered as an additional coordinate. Time may be incorporated 
by forming the manifold R X M ;  then any curve U in M defines another curve in 
R X M, its graph, given by t +  ( t ,  c+(t)). (Alternatively, one may consider R X M as a 
(trivial) fibre bundle over R ;  then U determines a section of the projection R X M + R.) 
We now define, for each fixed t E R, an equivalence relation on curves defined near t ,  
by setting p and U equivalent if U ( t )  = p ( t )  and b(t) = P ( t ) ,  where b(t)  is the tangent 
vector to U at t. Thus p and U are equivalent at t if they pass through the same point 
and have the same tangent vector there. The set of all equivalence classes has the 
structure of a differentiable manifold of dimension 2m + 1. We call the equivalence 
class of U at tits 1-jet and denote this byj : (a)  E J ' (R ,  M ) .  Each 1-jet may be identified 
with a triple ( t ,  x ,  U )  where t E R, x E M and U E T,M. Thus J ' (  R, M )  may be identified 
with R X TM. On the other hand, it is clear that this construction is a particular case 
of the general construction of the manifold of 1-jets of smooth maps between two 
manifolds; and in the case when one of these manifolds is space-time and the other a 
vector bundle over it, and the maps concerned are sections, then the 1-jet bundle is 
the appropriate space for the study of first-order field theory. (See, for example, 
Sniatycki (1970).) 

The 1-jet bundle J ' (R ,  M )  is fibred over R X M ,  where the projection map T is 
given by 

4 j W )  = ( t ,  c+(t)) .  

It is in fact a vector bundle whose fibre over (t, x )  is just T,M. (Indeed, for what it is 
worth, J ' (R ,  M )  may also be regarded as the pull-back of TM to R X M by the map 
R X M + M given by projection onto the second factor.) We shall use coordinates 
( f ,  x", U") on J ' ( R ,  M )  defined as follows: ( t ,  x " ,  U") are the coordinates of the 1-jet 
at t of the curve in M given in terms of coordinates ( x " )  on M by s + ( x " + s u " ) .  

Any curve U on M defines a section j ' (a)  of the fibration J1(R,  M )  + R (obtained 
by composing T with projection of R X M  onto the first factor) by 

i ' ( U ) ( t )  =i;(v).  
Not every section of J ' (R ,  M )  + R has this particular form, however. In terms of 
coordinates ( t ,  x", U"), a section t +  ( t ,  a"(?) ,  U"(?)) will be the 1-jet of the curve cr if 
and only if 

u " ( t ) = c i " ( t )  for all t in the domain of U. 

This condition may be expressed conveniently in terms of the m local contact 1-forms 
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e", which have the coordinate expression 

8" = dx" - U" dt;  

for a section 5 of J'(R, M ) +  R is the 1-jet of a curve in M if and only if 

a = l , 2 , .  . . ,m. i * e a  = 0,  

Moreover, any such section 3 of J ' (R,  M )  + R must satisfy 

i* dt  = dt. 

It follows that any vector field r on J ' (R,  M )  whose integral curves are all 1-jets of 
curves in M must satisfy 

(r, ea) = 0 ,  a = 1 , 2 , .  . . , m ;  (r, dt) = 1. 

We call such a vector field a second-order differential equation field. It takes the form 

r = a/at+ U" alax" + f a  alau" 

in terms of coordinates, for some smooth local functions f a  on J ' (R,  M ) .  Its integral 
curves with initial t coordinate 0 have t for parameter and satisfy 

X " ( t )  = u " ( t ) ,  

X" =f"(t, x, X). 

U"(t)  =f"(( t ,  x ( t ) ) ,  u ( t ) ) .  

They are thus the 1-jets of the solution curves of the second-order differential equations 

3. Geometrical structures on J'(R, M )  

We have seen that J ' (R ,  M )  is a vector bundle over R X M and is equipped with a 
system of 1-forms, the contact forms, with local basis 8" = dx" - ua dt. We now describe 
some of the other geometrical structures on J'(R, M )  which will be useful in this and 
subsequent work. 

Let X be a vector field on R X M ;  there is a unique vector field X ( l )  on J ' (R,  M ) ,  
its first prolongation, such that 

T * X ( l )  = X, 
2 ' x ( 1 ~ O a  is a linear combination of the basic contact 1-forms. 
In coordinates, if 

a a 
a t  a x a  

X = r-+ 6" - ( T , [ "  local functions on R X M )  

then 

x(') = r slat + 6" a/axa + 77" alau" 

where 

For any two vector fields X, Y on R x M, 
[X'" , y(1) ]=[X, Y]? 
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Moreover, 

(a/at)(') = a/at. 

It is a straightforward consequence of this definition that for any vector field X on 
R X M and any second-order differential equation field r, the vector field 

v = zx(llr - i r  
is vertical (where T = (X, dt)). Now the addition of a vertical vector field to a second- 
order differential equation field leads to a new second-order differential equation field. 
Thus, roughly speaking, prolongations preserve second-order differential equation 
fields: the effect of the action of the flow of X") on r is to transform it into a new 
second-order differential equation field, with a change of parametrisation if i f 0. 

A vector at a point of J'(R, M )  is said to be vertical if it is tangent to the fibre of 
x :  J ' (R,  M )  + R X M. The vector fields V, = a/au" form a local basis of vertical vector 
fields. We define a set of m local vector fields Ha, in terms of a given second-order 
differential equation field r, by 

H, = a/axa -A: a/aub, 

(and r = a / a t +  U' alax" + f a  a/au"). We call elements of the vector field system 
spanned by the Ha horizontal. The vector fields {Ha, V,, r} form a local vector field 
basis on J ' (R,  M ) ,  with dual basis of 1-forms {e" ,  $", dt} where 

where Af: = -iafb/au" 

$" =dUa - f a  d t  +A;Ob = A;dxb +du" - (f" +A;ub) dt. 

We shall discuss the provenance and the utility of the horizontal vector fields shortly; 
but first we list a number of useful relations involving them: 

[H,, vb] = -$(a2fc/auaaub) v, = [&, v,], 

[r, Ha] = A:Hb + @: vb, [r, V,] = -Ha +A: Vb 
Moreover, evidently 

[ va, vb] = 0; 

on the other hand [Ha, Hb] is not zero in general, but it is always vertical. 
We define a type (1,l) tensor field S on J'(R, M )  by 

s=  vQoea. 
It has the following properties, which indeed determine it uniquely: 

S vanishes on vertical vectors, and on second-order differential equation fields; 
for any vector field Z on J'(R,  M ) ,  S ( Z )  is vertical; 
S(a/at) =-A,  the dilation field on J'(R, M )  considered as a vector bundle over 

Given any vector field X on R X M we define its vertical lift X' to J'(R, M )  by 
R x M .  

X'= S(X(1)) .  

In coordinates, if X = T a/at  + 5" a/ax", then 

x' = (5" - U ,T) v,. 
The complete and horizontal lifts of X relative to a second-order differential equation 
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field r, X' and X h  respectively, are defined by 

X' = X ( l )  - ( X ,  dt)T 

x ' =  (6" - U " T )  alax" +( la  - U n + - f a T )  a/aua 

X h  = (6" - u"r)H,. 

and x h  = &xV, r ]  + xc) .  
In coordinates 

and 

(Compare with Crampin (1983).) Note that X' and X " )  coincide for vector fields X 
on M. The following relations hold (where r = ( X ,  dt) and p = ( Y ,  dt)): 

[X ' ,  Y'] = 7Y'-pX', [X' ,  Y ( ' ) ] = [ X ,  Y ] '+ iY ' -bX' ,  

2 X ( l ) S  = is, 2 y S  = rS - X'O dt. 

Now let r be any second-order differential equation field on J ' (R ,  M ) .  We establish 
some results about grS. (Compare Crampin (1983) for the time-independent case.) 

Lemma 2. For any vector field X on R X M, 

( 2 r S )  ( X " )  = X'.  

Lemma 3 .  For any vector field X on R X M, 

(Y , .S ) (Xh)  = - X h .  

Proof. By definition, 

xh  = ~ ( [ X V ,  r ]  + xc). 

S(X')  = S(X'")  = X'. 

Note that 

Thus 

( Z r S ) ( X c )  = [r, X'] - S([T, X']) .  
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Now [r, X'] is vertical, since, as we pointed out above, 

[ X Y  r] = i r  + v 

[x, r ]  =[x(l) ,  r ~ - [ ~ r ,  r ] =  i r+ v- ir  = v. 
where V is vertical, and thus 

So in fact 

(2rS)(XC) = -[Xv, r]. 
On the other hand, as we showed in the proof of lemma 2, 

s([xv, rl) = x v =  s(xc); 
so [Xv, r] - X' lies in the kernel of S ;  and since 

([Xv, r], dt) = (X', dt) = 0 

it is in fact vertical. Thus, by using lemma 2 again, we obtain 

(zrs)(xh) = (TrS)($([Xv, r ] - x C ) + x )  

=$([xv, r ] -xc) - [xv ,  r] 
= -Xh. 

Thus TrS has eigenvalues 0, +1 and -1. The eigenspace at a point of J ' (R ,  M )  
corresponding to the eigenvalue 0 is spanned by r, while the eigenspaces corresponding 
to the eigenvalues +1 and -1 are the vertical and horizontal subspaces respectively. 
By reversing the direction of this argument one may give a coordinate free definition 
of the horizontal subspaces: they are the eigenspaces of 2 , - S  corresponding to the 
eigenvalues - 1. 

The 1-form basis {e", $", dt} adapted to this direct sum decomposition of each 
tangent space to J ' (R,  M )  turns out to be a very convenient one to use in the context 
of Lagrangian dynamics and the inverse problem. In part, this is because 

(r, e" )  = (r, 4") = 0 ,  (r, dt) = 1. 

But of course this particular basis is not the only one to have these properties. Indeed, 
it might seem that a more obvious choice would be {e", dun  -fa dt, dt}, a 1-form basis 
which in fact has been frequently used before (for example, by Crampin (1977) and 
Prince (1983)). The additional advantages of using the new basis will become apparent 
below. 

The horizontal distribution is a generalisation of the one defined 'by a symmetric 
connection, which is recovered when r is the geodesic spray of the connection. This 
approach to questions concerned with geodesic conservation laws in general relativity 
has been exploited by Prince and Crampin (1983). 

4. The Euler-Lagrange field and the Cartan form 

Suppose we are given a Lagrangian, that is, a smooth function L on J ' ( R , M ) .  It 
determines, in the familiar way, a second-order differential equation field r, whose 
integral curves are the 1-Jets of the solutions curves of the Euler-Lagrange equations. 
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We assume that the Lagrangian is regular, which is to say that (in terms of local 
coordinates) the matrix whose entries are 

f fab = a2L/auaaub = v,( v&)) 
is non-singular. Then r, which we call the Euler-Lagrange field, is given by 

r = a / a t + u "  a /axa+fa  a/aua, 

a ,b fb  = aL/axa - ub a2L/axbaua -a2L/auaat. 

where 

Moreover, ( f fab)  satisfies the Helmholtz conditions. Since {Ha,  V,, r} and {e", $", dt} 
are dual local bases, r is uniquely determined by the equations 

(r, e a )  = 0,  (r, = 0 ,  (r, dt) = 1. 

As an alternative to all but the last of these, one may replace the 2m conditions 
involving 1-forms with one condition involving a 2-form, as follows: if we define a 
2-form R by 

R = (Yob$, 8' 

then r is the unique characteristic vector field of R satisfying the final normalisation 
condition: that is, r satisfies 

irR = 0, (r, dr) = 1 

and is unique in so doing. It is evident that r does satisfy these conditions; also 

AR A . , . An= *det(ffob)$l A . .  . A  $" A @ ' A , .  . A  8" # o  
(there being m factors on the left-hand side) since ( f fab)  is non-singular and $', . . . , $m, 

e l , .  . . , 8" are linearly independent, and this implies that the space of characteristic 
vectors of R at each point of J'(R,  M )  is one-dimensional. 

Again, many 2-forms could be found with this property. What is significant about 
this one, and therefore significant about the particular 1-forms involved in its construc- 
tion, is that 0 is actually the exterior derivative of the Cartan 1-form 

OL = L dt+dLa S = L dt+(aL/aua)ea.  

This we now prove, with the aid of a lemma. 

Lemma 4. The vertical vector fields and the horizontal vector fields determined by 
the Euler-Lagrange field of L satisfy 

v&a(L) = vaHb(L). 

Proof. The Euler-Lagrange equations may be written 

r v , ( ~ )  = aL/axa. 

H, =f([v, ,r]+a/axa),  

Now, by definition, 
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fieorem 1. 

q&ha A O b  = d(L dt  +dL 0 S) = de,. 

Proof. We evaluate de, by using the formula 

de,( Y, Z) = Y K  ~ L . ) - Z (  Y, &.)-CY, Z l , e ~ . )  
with appropriate choices of vector fields from {Ha, V,, r} to stand for Y, Z in turn. 
Note that 

(Ha, e,>= Va(L),  (Va, 6,) = 0, (r, e,) = L. 

Thus, since [Ha, Hb] is vertical, 

d@L(Ha, Hb)=Ha(vb(L))-Hb( va (L) )  

= [ H a ,  vbl(L)-[Hb, vaI(L)+ vb(Ha(L)) - va(Hb(L)> 
= 0, 

using the lemma, and the fact that [Ha, v b ]  = [Hb, V,] .  Clearly, 

deL( v,, v b )  =o. 
Moreover, 

deL(r,  H,) = r ( V , ( L ) ) - H , ( L ) - A f : V b ( L )  = O  
by virtue of the Euler-Lagrange equations, while 

deL(r ,  v,)=-v,(L)+(H,,  eL)=o. 
Finally, 

deL( va, Hb) = v a (  vb(L))  = aab ,  

since [ V,, Hb] is vertical. 

The significance of the l-form basis {ea, CL", dt} lies in the fact that with respect to 
it the Cartan 2-form has this particularly simple expression. Consider now the inverse 
problem. The l-forms CL" are defined by the given second-order differential equation 
field, of course; thus 2-forms R with the algebraic properties enjoyed by a Cartan 
2-form may easily be constructed. But in order that such a 2-form R be a Cartan 
2-form, it must also satisfy a differential condition, or conditions, equivalent to closure 
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(dR = 0). We show in 9 5 that if R satisfies the appropriate algebraic and differential 
conditions then it takes the form A O b ,  where the functions (Yob are the 
elements of a multiplier matrix and satisfy the Helmholtz conditions. 

= 

5. The Helmholtz conditions 

We have shown that for an Euler-Lagrange field, if we set R = (Y,b(ba A O b  then R 
satisfies the following conditions: 

wv,, V,)=O 
irR = 0, 
dR = 0. 

Note that the second two of these conditions entail that LrR = 0. 
We now prove a converse to this result, namely that a 2-form R satisfying these 

conditions for a given second-order differential equation field r must necessarily take 
the form aab+ha A O b  where the (Yab satisfy the Helmholtz conditions. In fact the final 
condition dR = 0 may be considerably weakened. The theorem below is the analogue 
for time-dependent dynamical systems of the results of Crampin (1981) for the 
time-independent case. 

for any vertical vector fields V,, V,, 

Theorem 2. Given a second-order differential equation field r, the necessary and 
sufficient condition for there to be a Lagrangian for which r is the Euler-Lagrange 
field is that there should exist a 2-form R, of maximal rank, such that 

R( V,, V,) = 0 for any pair of vertical vector fields VI, V,, 
i rR= 0, 
LrR = 0 ,  
indo(  V,, V,) = 0 for any horizontal vector field H and any pair of vertical vector 

fields V,, V,. 

Proof. The necessity is apparent. To prove sufficiency, we show that these conditions 
imply that R = 

The first two (purely algebraic) conditions imply that when expressed in terms of 
the basis 1-forms { e a ,  (b", dt}, il has the form 

A O b  where the (Yab satisfy the Helmholtz conditions. 

n = ( Y a b ( b a  h @'+Pabe"  h 8'. 

From the assumption that R has maximal rank, so that the m-fold exterior product 
R A R A . . . A R # 0, it follows that ( (Yob)  is non-singular. We may assume Pba = -Pab. 

Next, we compute S rR .  By dualising the formulae for [r, H a ]  and [r, Val given 
in Q 3 one obtains 

S r O a  =-A;Bb+(ba, S r G a  = -@: e - 
Thus 

3l-n = r( (Yab)+ha A ob  - (Ybc(@:ea A:$") A ob + (Yac+ha A ((b' - Ageb) 

+ r ( p a b ) e a  A eb+2P.b((ba-A;,') A ob. 
SO S r R  = 0 only if 

(9 r ( P a b )  = PacACb- PbcA: + (Yac@'cb- (Ybc@:, 
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(ii) 

(iii) cyab = aha. 

r ( a a b )  = aocACb+ a b c A :  + 2Pab9 

From (ii), by taking the skew-symmetric part it follows that P a b  = O .  We thus obtain 
the first three Helmholtz conditions. 

Finally, the condition iH dfl( VI, V,) = 0 ensures that the coefficient of cLb  A $' in 
iHdfl vanishes; when H = Ha this turns out to be daab/auc -aaac/aub, and so the final 
Helmholtz condition is obtained. 
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